
AD-Ahl 761 04ASSACHLOSETTS UNIY AMHIERST DEPT OF COMPUTER AND INF-(TC F/4 9/2
PROCESSING COESt A COMUTATIONAL STRUCTURE FOR IMAGE ANALTIS. (U)
DEC &I A Rt HANSON. Cf M RISEMAN N00015-75-C-OR59

UCLASSIFIED COINS-TR-13 #6.

IND

451 11111-5

10 11- I

'IIII 11 1

MICROCOPY RESOLUTION TEST CHART

NATIONAL RURAU O STANDARDS 1963 A

I

Computvedfr andli InfrmaionScinc

Iitiuin niie

PROCESSING CONES:
A COMPUTATIONAL STRUCTURE FOR IMAGE ANALYSIS*

Allen R. Hanson

Edward M. Riseman

COINS Technical Report 81-38

December 1981

Ab.-;tract

A layered hierarchical parallel array architecture for image analysis
applications, referred to as a processing one, is described and sample
algorithms are presented. A fundamental characteristic of the structure is its
hierarchical organization into two-dimensional arrays of decreasing resoluti)n.
In this architecture, a protypical function is defined on a local window of data
and applied uniformly to all windows in a parallel manner. Three basic modes of
processing are supported in the cone: reduction operations (upward processing),
horizontal operations (processing at a single level) and projection operations
(downward processing). Complex image analy.s is algorithms are specified as
temporal sequences of function applications. The cone structure forms the basis
of a sophisticated operating system for an image analysis environment.

This paper has appeared in Structured Computer Vision, S. Tanimoto and
A. Klinger (Editors), Academic Press, 1980. It is based on work originally
appearing as part of "Preprocessing Cones: A Computational Structure for Scene
Analysis," COINS Technical Report 74C-7, 1974.

*This work was supported in part by the Office of Naval Research under Contract
No. NO0014-75-C-O459, and in part by the National Science Foundation under Grant
No. MCS-7918209.

I. Introduction

Over the past several years, much energy has been devoted to the area of

scene analysis known as segmentation, or 'low level' vision. The general goal

of a low level vision system is the transformation of a large spatial array of

pixels (i.e.. picture elements) into a more compact description of the image in

terms of visually distinct syntactic units and their characteristics. By a

variety of means, the visual information in the image must be aggregated,

labelled with symbolic names and attributes, and then interfaced to higher level

knowledge structures for interpretation of the image [HAN78a]. The syntactic

units most often used are boundary segments (connected sets of edges between

pixels) and regions (connected sets of pixels); their attributes include

properties such as length, size, shape, location, color, and texture.

Given the long range goals of scene analysis systems, one must consider the

computational architectures that can facilitate the variety of forms of

processing which probably will be required. In almost any application of image

analysis, a characteristic which cannot be ignored is the massive amount of

visual data which must be processed. For a full-color image of reasonable

spatial resolution (512x 512) and color resolution (3 *'.o-'rs, 6 bits/color),

close to 5 million bits of information must be processa(., ?ten repeatedly.

Faced with this computational overload, our group made a commitment to parallel

processing at the very beginning of our research effort [HAN74, RIS74]. If such

large amounts of sensory data are eventually to be processed by a machine in

real time, then the use of large parallel array computers appears to be

necessary. It is relevant to note that developents in tehn hat

to fu t

oric J 0 ja

Ca :3

2

such devices could be economically feasible in the near future.

Given a choice of developing either serial or parallel algorithms (or

both), we have developed parallel algorithms wherever possible. A commitment to

the discipline of developing algorithms as local parallel operations pays off in

providing a way of thinking about transformations of visual data. Clearly, many

algorithms can be implemer. ed in both sequential and parallel versions.

However, in much the same way that language appears to affect thought, thinking

in terms of parallel computation leads to the development of algorithms which

are often not at all obvious in sequential terms. In addition successful

demonstration of segmentation algorithms for simple parallel hardware makes

future implementation on real machines far more clear.

A second critical consideration is the distinct need to reduce the large

amounts of visual information, while at the same time extracting relevant

features from local areas of the image. Many interesting features are not a

function of individual pixels, but rather a function across the set of points in

a local "window" of the image, and the required size of this window will vary.

For example the variance of intensity over a square neighborhood centered on a

pixel can serve as a texture descriptor of that neighborhood. Given that the

size of this neighborhood must vary with the function employed, the environment

being imaged, and the resolution of detail (which is dependent upon the distance

to the imaged object), the extraction of such features would be, facilitated by a

hierarchical organization of layers of decreasing image (and processing)

resolution.

3

These design considerations have led us to simulate a general, parallel

computational structure, called a "processing cone", for manipulating large

arrays of visual data. This parallel array computer is hierarchically organized

into layers of decreasing spatial resolution so that information extracted from

increasing sizes of receptive fields can be stored and further processed. The

structure of the processing cone is described in detail in [HAN74] and applied

in [HAN75,NAG77J. It bears a relation to recognition cones of Uhr [UHR72] , the

hierarchical data structures of Klinger [KLI76], the pyramids of Tanimoto and

Pavlidis, and Levine [TAN75,LEV78J, the computational structure of algorithms

developed by Rosenfeld et. al [ROS7l.HAY74], the planning algorithms of Kelly

[KEL71] and Price [PRI77J, and knowledge-directed analysis of Ballard, Brown,

and Feldman [BAL78). A survey of some of these uses appears in [TAN78].

The function of our processing cone is the transformation and reduction of

the massive amount of image data in a form that facilitates scene interpretation

by computer vision systems CHAN78b]. The hierarchy of computational processing

provides a structure n which information at higher levels can direct more

detailed processing at lower levels of the cone. The cone structure and the

range of algorithms definable within the cone are the subject of this paper.

1.1 Overview

The computational structure of the processing cone is designed to

facilitate the parallel processing of large arrays of visual data. It is

general-purpose in that it may be programmed by defining a prototype computation

to be performed on a local window (i.e. subarray) of data. In the cone, this

- ~~4 mom

4

prototype function will be applied simultaneously - and in parallel - to all

local windows across the entire array. The user need only specify the

definition of the functicn, the location of the source(s) of the data within the

cone, a description of the size and shape of the local window, and the

destination of the result(s) within the cone. The cone's operating system

simulates lockstep computation just as if there were parallel arrays of

synchronous microprocessors computing on each window; each microprocessor

executes a copy of the prototype computation.

An important characteristic of the processing cone structure is its

hierarchical organization into layers of decreasing resolution. Figure 1

depicts a cone with an initial image resolution at level 0 of 512x512 pixels;

the next layer has one half the resolution on a side (256x256 pixels), etc.

T1hus, levels 0 through 9 have resolutions of 512x512, 256x256, 128x128,

64x64 2 x 2, 1 x 1, respectively. Since the prototype function associated

with a cell at level k is applied to a window of data from level k-] below it,

this type of transformation allows data to be "reduced" up the cone. The

decrease in spatial resolution is achieved by requiring adjacent cells at level

k to receive data from level k-l windows which have non-overlapping, but

adjacent, 2x2 centers. The effect of this hierarchical reduction in spatial

resolution is that cells at successively higher layers store and process

information extracted from increasingly larger receptive fields on the image

below.

The algorithms which could be implemented within the cone would be severely

limited if only a single value could be stored at each cell in a layer.

5

Therefore, each cell at a given layer is capable of storing a vector of

information, not just a single scalar value. For example, the initial data at

level 9 might consist of three color components (red, blue, and green).

However, additional memory at all levels is usually necessary in order to store

both intermediate and final results of processing. This information may be used

as the input to further prototype computations. For example, it might be useful

to store at a cell some feature of texture and at the same time also have

available the average (or maximum or variance) of this feature over a local

neighborhood around the cell. In another case, it might be desirable to keep

the original color data as well as a region-label image denoting the symbolic

region assignment of each pixel. Thus, it is useful to view a level of the cone

as a collection, or packet, of planes, where each plane can store either a

numeric or a symbolic value.

The design for the cone structure presented here, and which is being

simulated in our research on image interpretation, is not intended to be a

blueprint for a hardware implementation. Rather, we view it as a tool to be

used in the development of parallel processing algorithms for image analysis.

Since the forms of processing that are sufficient to achieve thes(goals are

still unknown, maximum flexibility was desired consistent with feasible network

connections for a single processor in the network. This has led to a design

with connectivity from a given cell to a variable size local neighborhood of

cells; the size of the neighborhood is defined under program control up to some

fixed maximum value.

6

II. Modes of Processing and Algorithm Specification

There are three basic modes of processing available within the cone:

reduction operations, horizontal (or lateral) operations, and projection

operations. These correspond to a flow of information up, laterally, and down

the cone, respectively, as shown in Figure 1.

During a reduction process upward through the layers of the cone, a window

of data at level k is processed and the resultant value(s) stored at level k+l;

the data is reduced since the central portions of each window are

non-overlapping.

Dring horizontal operations, the domain and range of the local function

are the same level of the cone, nhich means that processing is restricted to a

single level. The resolution of the data remains constant since each cell at a

level will have a window centered over it. This same cell receives the result

of the local application of the function, but note that each cell can receive

and store a vector of values.

During projection operations, information in upper layers of the cone

influence computation at lower layers. This is achieved by extending the

definition of the neighborhoood for horizontal processing to include data

present in parent cells in the hierarchy above.

In the next sections we will examine each of these mode! of processing in

somewhat more detail; they are graphically illustrated in Figure 2. The formal

Resolution Level 7

12 9
I 9

22 8
Modes of processing:

42 7 t Reduction (up)
f Projection (down)

(-- Iteration

82 6 (some level)

16 5

32 4

ssI

64 2/ 3

1281 2

512 0

Figure 1. The processing cone. This parallel array computer is hier-
archically organized into layers of decreasing spatial resolution.
Information within the cone is transformed by means of functions operating
on local windows of data. The results of the function are stored in one
or more "planes" of data at specified levcls. Cone algorithms are specified
as sequences of these parallel functions applied in one of three processing
modes: reduction (processing up the cone), projection (processing down the
cone), and iteration (processing at the same level).

8

notation sptcifying these modes is denoted in Figure 2, but the discussion of

this notation is delayed until Section 11.5.

II.1 Reduction: Upward Processing within the Cone.

During reduction, each function has as its input the data from a local

window of cells at level k and outputs one or more values into a single cell at

level k+l. Each window is of size nxn, where n is greater than or equal to 4

and is even; each such window is placed over a unique 2x2 set of cells at level

k. Since the centers are non-overlapping, each cell at level k+l is associated

with a particular 2x2 subarray at level k, and this provides the decrease in

spatial resolution at each higher level. In Figure 2a we have shown the case

for n=4 so that each neighborhood overlaps by one cell the neighborhood adjacent

to it in the north, south, east, and west directions. The overlap of adjacent n

x n neighborhoods avoids such difficulties as, for example, a spatial

differentiation operator missing an edge because it lies on the border of

adjacent 2x2 centers. The source plane(s) at level k and the destination

plane(s) at level k+l are specified under program control as the input and

output of the local function. The window size may also be set under program

control.

Averaging repre-ents a simple example of the reduction process. It is

trivial to average an image up the cone using a single function AVERAGE-UP to

obtain a sequence of reduced resolution images. The value found at the 1 x 1

level represents the average intensity of the entire image. One merely has to

write a single function AVE which averages the four points in the 2 x 2 center;

9

(0) Reduction processing: ftk (It,...,ID
level k +1

Every cell at level k ~iis associated
with a unique 2X2 window of cells
at level k

2X2 center
level N NXN window(N even)

N

(hi Horizontal processing: ftk(Ii,...,IDOi,..OR)

lv I k NXN window Every cell at level k is treated as
la S6 IN" (N odd) the central cell of an N X N window

of cells at level k
N

(ci Projection processing: f't . I I o .

level t

Every cell at level k is associated with
a window of ancestral cells from level

(Q- k) Xi window k+ithrough the top of the cone, one
from each level. The particular cell is
determined by the sequence of reduc-
tion windows.

level K L

Figure 2. Processing modes in the cone. (a) During reduction processing,

the local function f is applied in parallel to all even-sized windows of
data at level k (the input data is in planes Il,...,ID). Results are
stored in the output planes 0 1,..., 0R at level k+l. (b) During horizontal
(or iterative) processing, the input data for f is derived from odd-sized
windows and the results are stored at the same level in the cone.
(c) During projection, the input data for f is obtained from levels higher
in the cone. Results are stored in the output planes at level k.

10

AVERAGE-UP is composed from AVE by applying AVE at level k-l at time k (for

kzl ,2,.....9) •

11.2 Horizontal (Lateral) Processing: at a Fixed Level in the Cone

During a horizontal processing operation, as illustrated in Figure 2b, each

local function receives data at level k from an n x n window (of odd size.

nzl,3,5,....) and places the resultant value into the central cell of that

neighborhood. Note that the overlap of adjacent neighborhoods is significant

when n is greater than 1. Since every cell at level k has its own unique window

placed over it, there is no decrease in the resolution of the data. Again,

neighborhood size and the memory planes for source and destination values are

all under program control.

Many interesting algorithms require iterative applications of a function.

Typical examples are region and edge algorithms based on relaxation techniques

[HAN78a]. In these algorithms, information in a local neighborhood is used to

update a set of likelihoods or confidences of hypotheses at the central cell in

the neighborhood. During each iteration the prototype local function is applied

simultaneously to every cell at the specified level in a true parallel manner.

The number of iterations of a local function can be fixed prior to computation,

or it can be determined dynamically as execution proceeds. In the latter case,

any of the local copies of the prototype function, as it executes on its local

window, can set a global flag which specifies that either another iteration is

to be performed or that processing is to be terminated. This implies that the

continuation of horizontal processing can be under the control of a global

decision mechanism based on the existence (or absence) of a local property

across the image. For example, implementation of a region growing algorithm

requires that horizontal processing be performed until no new pixels have been

added to the region being grown. In this case, whenever a pixel is assimilated

into the region, the particular local process can specify that iteration is to

continue by setting the global flag to TRUE. The flag is examined after each

iteration; if it is FALSE, then no change has taken place (the region is

completely grown) and iteration is terminated.

11.3 Projection: Processing Information Downward in the Cone

In the previous two sections, we have shown how information can flow up and

laterally within the cone. These operations have the effect of allowing a local

computation to participate in the formation of more global values at levels

higher in the cone. However, it is also quite useful to allow global

information to influence local computation, (for example in planning mechanisms

[KEL71,PRI77J which allow greatly increased efficiency in computation). This is

achieved by a projection process which makes available global information from

cells at higher levels in the cone to cells at lower levels. A simple example

of the utility of this type of processing is found in thresholding operations.

In this application, a threshold value is computed at some high level in the

cone, perhaps the 1xi level (level 9). This information is projected down to

level k (k<9) where it could be used to set flags on or off, or to set

below-threshold values to zero. The threshold might have been obtained by

computing the mean and variance of the values at level 0 via reduction

operations. A more detailed example using local neighborhood thresholds will be

presented in Section III.

12

Let us examine the projection process a bit more carefully. Each cell at

any level of the cone is a member of a uique 2 x 2 center of a neighborhood

defined by the reduction operator; that is, it has a parent cell which this

neighborhood would map into by reduction. For a given cell at some level,

successive reductions denote a set of ancestral cells, with exactly one cell on

each higher level (Figure 2). If values throughout a cone have already been

computed, then information can be passed down the cone in parallel by making

available all the ancestral information of a given cell during a projection

pass.

It is of interest to note that the projection neighborh ods could be

extended to allow a window (rather than a single cell) into the information at

the level above. Thus, a cell at level k would see an nxn neighborhood around

its ancestral cell at level k+l. It is not possible to extend this definition

to the level above k+l without causing an exponential increase in the number of

connections to the given cell at level k. This was exactly the reason for not

allowing the reduction operator at level k to have direct access to the cells in

its receptive field at levels below k-l. In the architecture d,.soribed here,

information is required to pass indirectly to cells at level k via cells at the

intermediate Levels residing between. In summary, therefore, we maintain in the

projection neighborhood only the single ancestor from each level, but consider

it a reasonable possibility to expand the ancestor, at the next higher level

only, into an nxn window.

11.4 The Full Local Neighborhood of a Cell

In the previous sections we have presented the pure elementary modes of

processing in the cone. Sequences of local operations can be used to form

13

complete algorithms or used to define transformations of the data. In many

cases, the domain of the function to be computed at time t in the sequence

cannot be constrained to the neighborhood of a single processing mode. The

function may simultaneously require information in neighborhoods from more than

just one of the reduction, horizontal, and projection modes. This can be

achieved indirectly by copying the information into planes at level k by

application of pure reduction and projection processes. The function can then

be executed via a pure horizontal operation. However, such processing can be

made more efficient by allowing a function at some level to access a window

composed of the union of the three types of windows. Simultaneous access to all

three windows allows hybrid modes of computation - computation that could not be

classified as any of the elenentary modes - where the domain of the function is

composed of data from more than one level.

The full neighborhood of a cell at level k is shown in Figure 3. If the

reduction neighborhood is 4 x 4 and the horizontal neighborhood is 5 x 5, then a

cell at level k will have simultaneously available the storage planes of 16

cells at level 0 (the reduction neighborhood), 25 cells at level 1 (the

horizontal neighborhood) and the unique set of 8 ancestral cells from levels 2

through the apex of the cone.

11.5 Functional Notation and Algorithm Specification

In this section the notational conventions used to specify parallel

algorithms will be presented. In some cases sequences of operations can be

simply expressed diagrammatically in such a way that the domain and range of the

14

level 1

level I-I

(e-k) Xt projection
level k +1 neighborhood

N2 XN2 horizontal
level k neighborhood

(N 2 odd)

V Ni X Nj reduction
level k - I neighborhood

I VII/I/(N even)

Figure 3. The full local neighborhood of a cell in the cone. Given
a particular cell at level k, the value placed there can be computed
from the data which is simultaneously available from th neighborhoods
defined for the three processing modes. Thus, the domain of the local
function is the union of the three types of windows associated with the
three pure processing modes defined in Figure 4.2.

15

function, and the temporal relationships between functions, are obvious from the

context. In general, however, this simple notation will not be sufficient.

Some algorithms will require precise specification of both the levels and

specific planes for the domain (i.e., the input values) and range (i.e., the

output values) of each primitive function, as well as the relative order in

which the functions are to be applied. The following notation will be used to

specify one elementary operation of reduction, horizontal computation,

projection, or a combination of horizontal and projective processing:

f J(III 0oIt

where the symb.ols are represented as follows

f the symbolic name of the function

(and associated program code),

ij level i is the domain and level j is
the range of f, information is pro-
cessed from level i to level j,

D the domain of f is the D memory

planes Ia,...,I D at level I

0 i'"' 0 R the range of f is the R memory
planes 0 ,...,O R at level j,

t the time stamp, used to specify the
relative time of activation of f in a

sequence of function applications

t

1!

16

Where it is necessary, this notation will be extended slightly in order to

handle the cases where the memory planes of the domain and range do not all

reside at the same level:

t
f (Ii ID;Ol,....OR)

(ii, ,ID;Jl ... ,JR)

In this full notation, the memory plane of the input argument k is at level ik

and the destination memory plane for the output argument Ok is at level jk.

Thus, there is explicit specification of the level of every input argument and

output argument of function f. The notation has become somewhat clumsy, but it

usually not necessary to employ the full notation. Wherever possible, a ccne

diagram with arrows indicating the flow of processing will be used to :ketch the

execution of the algorithm. For simplicity we will omit many of these

parameters when the intended computation is clear from the context.

Using this functional notation, let us present an example algorithm which

is a composition of functions defined over the levels of the cone and time t.

The algorithm, MEASURE-EDGENESS, is to compute the average edge strength from

level 0 to level k as shown In Figure 4. The function will also be required to

compute the average edge strength squared since it will bo used again in Section

III. Thus, MEASURE-EDGENESS requires two subsidiary functions:

1. DIFF - a horizontal function which performs a spatial differentiation

of the original data using a 1x2 mask applied horizontally and

vertically, and then takes the max of these two values; and

MEASURE - EDG(/VESS.- '7

DIFFoo i O E),

FORM-ESQ', o (E ESQ),
AVE3 (E,ESQ; AVE-E, AVE- ESQ),AVE z (AVE-E, AVE-ESQ; AVE-EAVE-ESO),

AVE k4 (AVE-E, AVE-ESQ AVE-E, AVE- ESQ)

AVE hkk AEEAEEOAEEAE S)

Graphic Notation.*

level k

AVE k 42

levelI k-I

level 3

level 2AV
4

level I

Devel 0 10 FORM-ESQ 0 j 3

Figure 4. MEASURE-EDGENESS cone algorithm. This algorithm computes
the average edge strength of an image from level 0 to level k; it also
computes average edge strength squared. It is defined by the sequential
application of parallel local functions, each of which is one of the
three basic modes of processing.

18

2. AVE - a reduction function which averages data from one level to the

next level above in the cone.

First, let us examine the spatial differentiation operator illustrated in

Figure 5a. DIFF (I;E) is applied as a horizontal processing operator to the

image intensity plane I at level 0, and the result is stored in plane E at level

0. Spatial differentiation is often achieved by convolving a simple mask with

the image [DUD73] and here we use the smallest meaningful mask, of size 1x2

[HAN78a]. The result stored in plane E is a numeric value representing the

maximum of the local contrast change across pixels to the right and below. The

additional function FORM-E-SQ (E;ESQ) will just store in a plane called ESQ the

square of the values in plane E.

The local functions are most conveniently specified in a PASCAL-like

iotation, extended to include window types of the appropriate kind (e.g.

reduction, horizontal, and projection) and basic operations on these types. The

procedural definition of DIFF is shown in Figure 5b and should be

self-explanatory. Now, let us examine the definition of the reduction function

AVE as described in Figure 6. It employs a square 2x2 neighborhood and simply

averages the four values in the two specified planes and stores the results in

two new planes at the level above. By applying a reduction sequence of AVE's up

the cone, the running partial sums E and ESO can be computed up to level k.

The results of applying MEASURE-EDGENESS to the image ;hown in Figure 7 are

presented in Figure 8 for selected levels of the cone.

19

Input Masks Output
3X 3 horizontal

neighborhood

121 122 123 2 E22

331 32I3 I32 I3

I: Intensity plans E: Edge strength plane

Eresult = E 22 !1 2 -1 3 12 _4 }

Procedure: DIFF (I; E)

/* Notation: I is intensity plane, E is edge plane w;

Window: W(3,3) of type horizontal;

Begin / find max of horizontal and vertical edges

around central cell of W and store in edge

plane */

ABS (I[2,2] -1[3,21))

End
(b)

Figure 5. Specification of the local differentiation operator DIFF(I,E).
(a) The differentiation function is applied in the horizontal processing
mode to a 3x3 window of data; in this example intensity is the data
stored in plane I. The function computes the maximum response to two
1x2 edge masks and stores the result in the central cell of the window
in a plane named E. (b) DIFF in a procedural representation using a
PASCAL-like notation. I is the input plane on which is defined the
3x3 horizontal window; E is the name of the output plane.

20

INPUT OUTPUT
procedure AVE (E, ESO AVE-E, AVE-ES0)

2X2 reduction neighbor- reduction cell
hood at level k at level k + I 1* Notation: EESO input planes

AVE - E, AVE - ESO: output planes *1
E I E z 12A E -ER S L window E (2.2), ESO (2,2) of I Mp reduction;

E 21 E 22 rbegin/ compute overage edge strength and

edge strength squared
E: Average edge strength AVE-E: Average edge

plane strength plane SUM-E 4-0i
2

AVE-FERESULT = FY /4 SUM -ESQO - O

foreoch Xe W(E) 4kjESQ J SQ
111121 F-- SUM- E -- " SUM-E+X,1F 12 AVE - ESO IESUL T

ESL ES. foreach XeW (ESO) do21 22

SUM -ESO -- SUM- ESO Xj
ESO: Average edge AVE-ESO: Average edge

strength squared strength squared AVE - E -- SUM-E/4j
plane plane AVE-ESO -SUMESQ/4;

AVE- ES ESULT (- j4 /nd

(o) (b)

Figure 6. Specificatioll of the local averaging function AVE. (a) AVE
computes two results which are the averages of data in 2x2 reduction
neighborhoods provided as two distinct input planes. An equivalent
result is obtained by the individual application of a single function
with one argument to the two planes. (b) Functional representation
of AVE in a PASCAL-like notation. Two input planes and two output planes
are specified. The window type specifies reduction processing, which
fixes the output planes at level k+l If the input planes are at level k.
The mode of processing is specified by a declaration of the window type;
the specification of reduction window fixes the output planes at level
k+l for input planes at level k. Elements of data are accessed by
window W applied to plane E.

21

Figure 7. House img.Ti mg sa nest mgeo 256 256

reslu~on.This, eve 0in tecone corresponds to a resolution of-

256256pixls Itwasderve byselctig ne uarerof a 512-512
colr iage(6bits/color). The image contains a variety of image
charcteistcsincluding smooth regions. weakly and heavily textured
regins, nd Srongisolated hotindaries.

22

Figure 8. Results from MEASURE-EDGENESS for selected levels in the cone.
(a) Output from the differentiation operator DIFF(J,E) at level 0.
(b)-(d) Average edge strength at levels 1, 2 and 3, respectively,
encoded by brightness. At level 3, each cell "sees" a window of data
of size 16/16 at level 0. Note that only the average edge strength
is shown; average edge strength squared is also used in the computation
of variance in subsequent algorithms.

It

23

III. Cone Algorithms

Algorithms designed to be incorporated into an image understanding system

must extract a variety of information [HAN78c] from a scene and often can become

quite complex. One class of problems involves the segmentation of an image,

that is the paritioning of an image into areas -- or regions -- based on

invariance of some subset of visual features. One general class of these

algorithms involves extraction of boundaries between regions [HAN80], while a

second class involves the grouping of pixels directly into regions [NAG79]. If

the image being analyzed has any significant degree of textural variation, then

the problems encountered in extracting this information are greatly magnified.

In such cases it is necessary to extract features that typify the textural

variation in order to carry out the segmentation. Whether or not there are

strong textural characteristics present, after producing a segmented image,

various properties of the regions and boundaries must be extracted and processed

using stored knowledge of real-world events in order to form reasonable

hypotheses concerning their identities [HAN78b].

By now it should be clear that a wide range of algorithms for manipulating

images is required in order to perform reliable image segmentation and feature

extraction. The range of algorithms which have been implemented within the

processing cone structure is shown in Table I. In this paper we present only

two algorithms, which have been chosen to illustrate the capabilities of the

processing cone.

24

Features and algorithms

Average (blurring)
Spatiai differentiation - edge formation
Thresholding
Texture measures:

Edge orientation
Edge contrast /unit area
Weak edge suppression
Strong edge density
Variance
Texture coarseness- spot size
Density of local extrema
Average of local extrema

Functions of spatial gray level adjacency matrices
Region growing (all regions simultaneously)
Region masking
Region size
Region compactness - p2 /A
Shape matching
Relaxation labelling algorithms
Hierarchial relaxation labelling

*Approximation to original algorithm [HAN74, ROS74]

Table I. A sample of the image analysis algorithms which have been

implemented in the cone.

; " " - i

25

111. 1 A Simple Example: Weak Edge Suppression B Local Thresholds

Edge operators are used in image analysis to transform a gray-level

intensity image into a "line drawing" which denotes boundaries of regions of

relatively similar gray level. When an edge mask is convolved with an image,

however, there usually is a significant degree of variation in the responses,

ranging from strong responses from high-contrast boundaries to weak responses

from low-contrast bound;,ries or noise. In order to emphasize the more important

high-contrast boundarie,;, the weaker responses can be removed via a thresholding

operation. The problem, though, is that the threshold must vary dynamically not

only with the global coitrast characteristics of the image, but also with the

local characteristics within the image (e.g., the content of subimages). What

is perceived as a significant edge in one area of the image may not be perceived

as such in another area, depending on the context in which the edge is found.

The algorithm that we present here will dynamically determine thresholds for

local subimages as a function of the average and variance of edge contrast over

the subimage.

Figure 9 describes an algorithm which first computes edge strength and then

suppresses weak edges based on a statistical analysis of the edges over

rectangular receptive fields. This algorithm utilizes the MEASURE-EDGENESS

algorithm described in Section 11.4. Using the output of MEASURE-EDGENESS, the

mean and standard deviation for all the 20 *k x 20*k neighborhoods up the cone is

computed by executing FORM-li-a at level k (k=1,2,...,9). At any level the

computation of v and a is a simple function of E and ESQ during one

horizontal iteration. The threshold THETA-E can bc a simple linear function of

26

THRESHOLD - WEAK -EDGES: MEASURE - EDGENESS,
FORM - THRESHOLD
REMOVE - WEAK - E6GES.

FORM-THRESHOLD: FORM,.(O " 43 (AVE"E, AVE-ESQ;IAE'oE),

' + FORM , ,"

level iXi horizontal neighborhood:k 3E AVE-EFOR[AVEEESV -~AE-E)

iXi horizontal neighborhood:
THETA- z i=E+ u'E W user supplied

REMOVE-WEAK-0EDGES: ZERO- OUT[A0 o (E,THETA:E; E)
level IXM horizontal neighborhood:a ee

k lancestral cell at level k
ZERO- E a { E if E ,O E

OUT (0 otherwise

Figure 9. Definition of THRESHOLD-WEAK-EDGES. This function first
computes edge strength using MEASURE-EDGENESS, and then suppresses
weak edges by performing a statistical analysis of the edge strength

over rectangular receptive fields to form a view of the data, but the

global effect of the analysis can be controlled by selecting the level
in the cone at which the threshold is formed. A single horizontal pass
at level 0 removes edges below threshold. The weakness of the current
algorithm is that thresholds fo: neighborhoods can change abruptly
because the windows over which data is extracted are non-overlapping.

27

Figure 10. Differentiated image at level 0.

-wi

28

Figure 11. Weak edge suppression by local thrcsholds. The
set of images demonstrates the effect of choic, of level and
edge threshold (6 - V+wa) on the removal of wei k edges. The
level defines the local neighborhood over whic the edge
threshold is computed. When L=8 the threshold is global
because it is computed at the top of the cone. (a)-(c) Compari-
son of edge thresholding with increasing w shows that more and
more weak edges are removed, leaving only the globally strongest
edges. Note that much weak texture is removed (e.g., in the
wall and roof) at the expense of some of the car boundary.
(a,d,e) Comparison of edge thresholding with an increasingly
more local receptive field over which 8 is computed, shows
that globally weak but locally strong edges can be retained.
The car boundary is more complete and the weak edges in the
wall are still removed, but more of the roof texture remains.

.

30

P and C

THETA-E = f(0,O) = V + wo

where w can be a positive or negative real number, depending upon the degree to

which edges are to be suppressed. A local value for THETA-E will be computed

for each cell at level k by executing FORM at that level. Thus, each

non-overlapping square 2**k x 20*k neighborhood at level 0 will have its own

context-sensitive threshold based upon the mean and variance of the contrast of

edges in its field of view. If the cell at the top of the cone is employed (in

our case k=9 for a 512x512 image), then a single global threshold has been

computed for the whole image. At one level below, a threshold has been computed

for each quadrant of the image, etc. Only one final iteration pass is needed at

level 0 (or, In general, the level from which the sequence of computations was

initiated) to threshold the entire image. The horizontal function ZERO-OUT

merely sets to zero the edge contrast E of each local edge if it is less than

the threshold computed at level k. Figure 10 shows the differentiated image at

level 0 and Figure 11 shows the effect of thresholding this data from several

levels and for several thresholds.

Note the simpli, ity of the local operations and the flx ibility for

choosing the size of the receptive field over which THETA-E is computed merely

by moving to various levels in the cone. There is, however, one less than

satisfactory characteristic of this algorithm and the cone structure. Consider

the quadrants projected on level 0 from one level below the top of the cone.

The boundaries of these neighborhoods are abrupt, so that a line segment (i.e.

31

a contiguous sequence of edges) crossing quadrants may have one edge above

threshold in one quadrant, and yet have an adjacent equivalent strength edge

below threshold in the other quadrant. Each local edge does not have its , wn

symmetrically centered neighborhood for computing its optimum threshold. This

problem is seen in various forms in several algorithms. In this case the effect

of this problem might be reduced somewhat by utilizing averaged or interpolated

thresholds from one or two levels below for those level 0 cells that are near a

border of the receptive field from level k. This only requires an additional

check of the location of each level 0 cell (which is available in our simulated

architecture).

IV. An Example: Density of Strong Edges

One of the primary problems in the analysis of two dimensional images is

the segmentation of the image into meaningful regions. A patterned shirt or a

wood grained table top possesses textural characteristics whose analysis would

be aided by quantification of two-dimensional patterns of variation. In

particular it would be very useful to determine features of such patterns which

are invariant and which therefore allow the extraction of such regions.

One elementary measure of textural variation, Average Edge Contrast/Unit

Area, has been examined by Rosenfeld, et al[ROS71]. However, this measure has

a serious shortcoming in that it is a function of both contrast and density of

edges. Consequently, a low density of strong (high contrast edges could

produce the same value as a high density of weak (low contrast) edges. Thus, it

is useful to compute edge density with contrast factored out. This can be

32

achieved by defining a test for the existence of an edge. Density of edges can

then be computed as a function only of those edges which pass the test. Now,

one should note that a chreshold on edge contrast can be used as the test for

detecting the presence of 'strong' edges. Once edges have been turned on or

off, contrast need not be used in the computation of the density; weak edges

can be suppressed and only the density of strong edges will be computed.

Conversely, by turning off strong edges, only the density of weak edges is

computed. Clearly, the density of intermediate edge values can be computed in a

similar manner.

An algorithm for computing the density of strong edges is shown in Figure

12 and the results obtained for tle image of Figure 7 are shown in Figure 13.

The test for strong edges is straightforward. The algorithm of FORM-THRESHOLD

(refer to Figure 9) determines the mean and standard deviation for edge

contrast. It is computed across the entire image by movin i data to the top of

the cone and then a threshold e = P + wo is computed. w is positive here

because strong edges will be assumed to have a contrast above the mean of all

edges. For w=1, only edges whose contrast is greater than one standard

deviation above the average edge contrast are maintained a; strong edges. At

this point, in place of edge contrast a flag of 1 in the plane E-SUM at level 0

is used to mark the presence of a strong edge. The processing is completed in a

straightforward manner by counting the number of flags over a local area with

the reduction function COUNT-STRONG-EDGES, and then normalizing by area in the

horizontal operation GET-DENSITY.

It is worth summarizing the overall flow of processing up and down the

33
DENSITY -OF -STRONG-EDGES: MEASURE - EDGENESS

FORM- THRESHOLD,
FLAG - STRONG- EDGES,
COUNT- STRONG -EDGES.

$(ETHETA-E E-SUM)FLAG - STROIG - EDGES: ZERO - EDGE oo)(ETEA ESM

level X horizontal neighborhood at level 0
I ancestral cell at level 9

I if E >THETA-E
ZERO- EDGES k - 5 E-SUM 0 otherwise, Note: ZERO -EDGES is the some as ZERO-

0 OUT from figure 7 except that here the output

is flag (E-SUM) which is set if the edge is
above the local threshold. In this way, the edge
contrast is factored out of the current algorithm.

COUNT-STRONG-EDGES: COUNT E-SUMj E-SUM)

COUNT-M -- SUM; E-SUM),

GET- DENSIT E -SUM; DENSITY)

level

Co CON 2X2 reduction neighborhood

E-SUM ~ jE-SUM8
Sol mes

GET-ENSiTYf GET- DENSITYh EU;DNIY

level iXt horizontalI neighborhood at level t
DENSITY * E-SUM

2ZX2e

Figure 12. Algorithm for computing the density of strong edges.

This algorithm computes the density of strong edges over local windows
in the cone in such a way that the density is not a function of edge
contrast. It is similar to the weak edge suppression algorithm except
that edges that are above threshold are flagged with a value of 1.
A simple counting operation to level ? in reduction mode results in
the number of strong edges in the 2tx2Z neighborhoods at level 0.
A horizontal operation which normalizes these values by the area of the
neighborhood gives the density of strong edges.

34

Figure 13. Density of strong edges. The image:. show the
effect of increasing the edge threshold (6 = p+.j) upon the
density of strong edges computed to level 5 in the cone.
The weak edge threshold was a global threshold computed from
level 8. In each pair of pictures, the left imi ge is the

strong edge density and the right image is the same data laid
over the thresholded edge images. Increasing the weak edge
threshold, which has the effect shown in Figure 11, results
in a better separation between heavily textured areas (i.e.,
high density of strong edges) and the background. It may be

possible to use the edge density data as a mask, delineating
heavily textured areas.

I.

rT4

36

cone, which occurs twice. The first time involved spatial differentiation,

determining a local context sensitive threshold for strong edges, and then

finally thresholding out weak edges. The second pass involved setting the flag

for strong edges, then counting the flag up the cone to determine the edge

density. It is possible to use this data in a projection pass to turn on only

those areas which have a high density of strong edges in a similar manner.

V. The Processing Cone as an Operating System for Image Analysis

By utilizing the parallel processing cone system as the core of a low-level

image segmentation system, a number of advantages are realized. First, the cone

structure represents a flexible tool for the development and testing of image

analysis algorithms. It allows algorithms to be constructed, debugged,

documented, and tested relatively easily on a variety of images.

Second, when the facilities exist for defining algorithms as sequences of

local parallel operations, then it is only necessary to write a series of

functions, each in terms of a prototypical local window of data. All of the

overhead involved in actually applying the function is handled by the system.

Once a local function has been written it can be applied at any level in the

cone without modification. Algorithms then become automatically structured into

unit modules of computation, consistent with the tenets of good program design.

A third important characteristic of the cone involves data disp v and data

movement. The hierarchy of resolution levels permits rapid access to

intermediate results of computations while algorithms are being developed.

37

These levels also provide a type of focussing mechanism for applying the local

function to arbitrarily smaller areas of the image. This can be achieved by

placing a portion of the original data (a 20*k x 2**k subimage) at the

appropriate higher level in the cone and beginning the processing at this level.

It is particularly useful in facilitating program development by allowing

low-computation execution of a function at a high level in the cone, and then

being certain of its proper application at the low levels, with their attendant

massive amounts of data. Whenever focus of computation or display of

information is desired, then movement of subimages to higher levels is easily

performed.

Finally, it should be emphasized that the cone is not restricted to the

processing of only visual data. For exanple, a two dimensional histogram,

perhaps of image properties, can be inserted into the cone at the appropriate

level and processed as if it were an image. All of the algorithms developed for

processing images, such as region growing or thresholdiig, then become

immediately available.

A new general low-level image segmentation system based on the processing

cone was recently implemented on a VAX 11/780 in our laboratory; this system is

configured as shown in Figure 14. It provides a high level of user control over

low level functions through the use of LISP as the control language. This

choice was dictated somewhat by the requirement that the low-level system

interface directly into a high-level interpretation system [HAN78b]. LISP

provides the kind of interactive environment which is well suited to the

development of complex control strategies for segmentation algorithms.

38TImage ID Excto EBUe

Data A_ Functions
Base ""(FORTRAN)i

User Funagcta Base

Symbol ! :Appliceat ion Funct ionj

Table Executio t Select

Lisp Menuing I 'User

AFccSystem Functgoncto

Uer

IDB =>Image Data Base

EDB =>Execution Data Base

AF =>Accessing Functions

Figure 14. Overview of low-level image operating system.

I

39

The image data base is a hierarchical structure for long term storage of

processing cone planes. The execution data base is a temporary paged data base

structured for maximmum access speed. Communication between the two data bases

is accomplished via the image data base accessing functions which transfer

selected information between the IDB and EDB. The execution data base accessing

functions communicate between the execution data base and the user functions;

that is, they handle the overhead involved in returning windows of data to be

processed. Since these windows may involve data from various levels arid planes

within the cone, they have been coded for maximum efficiency. The user requests

function application (i.e. the sequence of local functions to be applied, their

parameter bindings, data sources, etc.) via an interactive LISP interface.

Thus, these control functions are written in LISP while the cone functions are

written in FORTRAN or assembly language. The function application executive

builds an appropriate environment for the execution of user function(s).

The system supports a number of data types directly accessible to the user

and performs dynamic data type checking and verification via range descriptors

and user specifications. The error handling system utilizes a menuing system to

dynamically correct error conditions whenever possible. These characteristics,

together with appropriate handling of default declarations, should make it

possible for even naive users to design and run sophisticated image analysis and

segmentation experiments. An extensive run time library of functions is under

continuing evolution. An automatic documentation facility is built into the

system; this facility maintains the processing history for each plane of data

so that any plane in the image data base can be automatically reconstructed

given the history. Since large amounts of data are usually generated during

40

algorithm development and experimentation, such a facility is crucial.

VI. Conclusions

Given the vast amount of data which must be processed during the analysis

of an image, questions of efficiency assume an increased importance. These

efficiency considerations imply that parallel architectures appear to be

necessary for image analysis applications.

The computational structure of the processing cone is designed to

facilitate the parallel processing of large arrays of visual data. It is

general-purpose in that it may be programmed by defining a prototype computation

to be performed on a local window (i.e. subarray) of data. In the cone, this

prototype function will be applied simultaneously - and in parallel - to all

local windows across the entire array. The user need only specify the

definition of the function, the location of the source(s) of the data within the

cone, a description of the size and shape of the local window, and the

destination of the result(s) within the cone. The cone's operating system

simulates lockstep computation just as if there were parallel arrays of

synchronous microprocessors computing on each window; each microprocessor

executes a copy of the prototype computation.

An important characteristic of the processing cone structure is its

hierarchical organization into layers of decreasing resolution. There are three

basic modes of processing available within the cone: reduction operations,

horizontal (or lateral) operations, and projection operations. These correspond

41

to a flow of information up, laterally, and down the cone, respectively.

Due to the hierarchical organization into levels of decreasing resolution

and the facility to transmit information down the cone (i.e., from lower

resolution levels to higher resolution levels), planning-type algorithms can be

constructed. Horizontal operations within the cone support algorihhms of an

iterative nature. Thus, as a computational structure, the cone is capable of

supporting a wide range of algorithms useful in image analysis. As a conceptual

structure, it provides a means of thinking about plausible parallel algorithms

and as a research tool it allows the construction and testing of these

algorithms.

Because of the highly organized nature of the cone, we have used it as the

basis for a sophisticated image processing system. In this system, cones are

dynamically assembled from a user-created library of planes. Image processing

algorithms, structured as temporal sequences of local functions, are created and

applied to the cone by means of a high level LISP control environment. The

system provides a powerful user-oriented environment for use in image analysis

research.

42

References

[BAL78] D.H. Ballard, C.M. Brown, and J.A. Feldman, "An Approach to
Knowledge-Directed Image Analysis," in Computer Vision Systems (A.
Hanson and E. Riseman, Eds.), Academic Press, New York, 1978.

(DUD73] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis,
John Wiley and Sons, 1973.

[HAN74] A. Hanson and E. Riseman, "Preprocessing 'ones: A Computational
Structure for Scene Analysis," COINS Technical R eport 74C-7, University
of Massachusetts, September 1974.

[HAN75] A.R. Hanson, E.M. Riseman, and P. Nagin, "Regior Growing in Textured
Outdoor Scenes," Proc. of 3rd Milwaukee rymposium on Automated
Computation and Control, 47 41--1975.

rHAN78a] A.R. Hanson and E.M. Riseman, "Segmentation of Natural Scenes," in
Computer Vision Systems (A. Hanson and E. Riseman, Eds.), Academic
Press, New York, 1978.

[HAN78b] A.R. Hanson and E.M. Riseman, "VISIONS: A Computer System for
Interpreting Scenes," in Computer Vision Systems (A. Hanson and E.
Riseman, Eds.), Academic Press, New York, 1978.

[HAN78c] A.R. Hanson and E.M. Rieman, Computer Vision Systems, Academic Press,
New York, 1978.

[HAN80] A.R. Hanson, E.M. Riseman, and F.C. Glazer, "Edge Relaxation and
Boundary Continuity," in Consistent Labeling Protlems in Pattern
Recognition (R. Haralick, Ed.), Plenum Press, New brI, 1980.

[HAY74] K.C. Hayes, Jr., A.N. Shah, and A. Rosenfeld, "Texture koarseness:
Further Experiments," IEEE Trans. Systems, Man, ard Cybernetics, 4,
467-472, 1974.

(KEL71] M.D. Kelly, "Edge Detection in Pictures by Computer Using Planning,"
Machine Intelligence, 6, 379-409, 1971.

[KL176] A. Klinger and C.R. Dyer, "Experiments on Picture Processing Using
Regular Decomposition," Computer Graphics anJ Image Processing, 5,
68-105, March 1976.

[LEV78] M.D. Levine, "A Knowledge Based Computer Vision System," in Computer
Vision Systems (A. Hanson and E. Riseman, Eds.), Academic Press, New
York, 1978.

[NAG77] P.A. Nagin, A.R. Hanson and E.M. Riseman, "Region Extraction and
Description Through Planning," COINS Technical Report 77-8, University
of Massachusetts, May 1977.

43

[NAG79] P.A. Nagin, "Studies in Image Segmentation Algorithms Based on
Histogram Clustering and Relaxation," COINS Technical Report 79-15 and
Ph.D. Thesis, University of Massachusetts, September 1979.

[PR177] K. Price and R. Reddy, "Change Detection and Analysis in Multispectral
Images," Proc. of 5th International Joint Conference on Artificial
Intelligence, Cambridge, 619-625, 1977.

[RIS74) E.M. Riseman and A.R. Hanson, "The Design of a Semantically Directed
Vision Processor," COINS Technical Report 74C-1, University of
Massachusetts, January 1974.

(ROS71] A. Rosenfeld and M. Thurston, "Edge and Curve Detection for Visual
Scene Analysis," IEEE Trans. ComDuters, 562-569, 1971.

[TAN75] S.L. Tanimoto and T. Pavlidis, "A Hierarchical Data Structure for
Picture Processing," Computer Graphics and Image Processing, 2,
104-119, June 1975.

[TAN78] S.L. Tanimoto, "Regular Hierarchical Image and Processing Structures in
Machine Vision," in Computer Vision Systems (A. Hanson and E. Riseman,
Eds.), Academic Press, New York, 1978.

[UHR72) L. Uhr, "Layered "Recognition Cone' Networks that Preprocess, Classify,
and Describe," IEEE Trans. Computers 758-768, 1972.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W onl D a4e ntered) READINSTRUCTIONS

REPOT DCUMHTATOH'AGEREAD NSTrRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPtENT'S CATALOG NUMBER

COINS TR 81-38 Ap -A, 7
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

PROCESSING CONES: A COMPUTATIONAL STRUCTURE INTERIM

FOR IMAGE ANALYSIS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) a. CONTRACT OR GRANT NUMBER(s)

Allen R. Hanson ONR N00014-75-C-0459
Edward M. Riseman

S. PERFORMING ORGANIZATION NAME AND ADDRESS WC. PROGRAM ELEMENT PROJECT, TASK
AREA I WORK UNIT NUMBERS

Computer and Information Science
Department

University of Massachusetts
Amherst, Massachusetts 01003

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research
12/81

Arlington, Virginia 22217 44

14. MONITORING AGENCY NAME & AODRESS(il dillferent front Controlln6 Office) IS. SECURITY CLASS. (of thle report)

UNCLASSIFIED

1S. DECL ASSI FIC ATION/ DOWNGRADING
SCHEDULE

1S. DISTRIBUTION STATEMENT (of thie Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abetect mtered In Slock 20, it different from Report)

19. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree side if neceeeay sd Identify by block number)

processing cones, image segmentation, image processing, parallel processing,

segmentation algorithms, hierarchical data structures, visual information
processing, scene analysis, texture analysis

20. ABSTRACT (Continue an reveree aide If neceee y md identify by block fltober)

A layered hierarchical parallel array architecture for image analysis
applications, referred to as a processing cone, is described and sample

algorithms are presented. A fundamental characteristic of the structure

is its hierarchical organization into two-dimensional arrays of decreasing
resolution. In this architecture, a protypical function is defined on a

local window of data and applied uniformly to all windows in a parallel

DD ,', 1473 EDITION Of I Nov soi ONSOLSTE UNCLASSIFIED .,

/ 010201401CURIY CLASSIFICATION OF TN PASE fgb. DWe Wl1eed)

L _ f
71.l A-ow

UNCLASSIFIED

.. w4Tyy CLASSIFICATION OF THIS PAGE(When Dal& 5a*.u.$)

manner. Three basic modes of processing are supported in the cone:
reduction operations (upward processing), horizontal operations (processing
at a single level) and projection operations (downward processing).
Complex image analysis algorithms are specified as temporal sequences of
function applications. The cone structure forms the basis of a sophisticateco
operating system for an image analysis environment.

SIRCURIY CLASSIFICATION OFTI UNASIIE D jn*G
7ASWa aeg~pd

